
Homework 3

T1

Suppose a 32-bit instruction takes the following format:

OPCODE SR DR IMM

If there are 64 opcodes and 56 registers, what is the range of values that can be represented by
the immediate (IMM)? Assume IMM is a 2's complement value.

T2

An LC-3 program is stored in memory locations x3000 to x3005 . Note that the branch
instruction in memory location x3002 has an unspecified PCoffset9, denoted as X.

Address Instruction

x3000 0101 000 000 1 00000

x3001 0001 000 000 1 00010

x3002 0000 011 X

x3003 0001 000 000 1 00011

x3004 0001 000 000 1 00001

x3005 1111 0000 0010 0101

The program starts executing with PC = x3000 .

Your job: In the table below, for each value of X, answer the question: "Does the program halt?"
(Yes or No). If your answer is "Yes", answer the question: "What value is stored in R0 just before
the instruction at x3005 begins execution?" If your answer is "No", put a dash in the column
labeled "Value stored in R0 ".

X Does the program halt? Value stored in R0

000000010

000000001

000000000

111111111

111111110

T3

After these two instructions execute: The next instruction to execute will be the instruction at
x3009 if what?

Address Instruction

x3000 0001 000 001 0 00 010

x3001 0000 011 000000111

T4

Suppose we changed the LC-3 to have only four registers instead of 8. Fewer registers is in
general a bad idea since it means loading from memory and storing to memory more often, but
we can still ask the question: would there be any benefit to reducing the number of registers?
For each of the following, answer yes or no, and explain your answer.

1. If we keep the basic format of all instructions as they currently are (and keep each
instruction 16 bits), is there any benefit for operate (0001, 0101, 1001) instructions, if we
reduce the number of registers to 4?

2. Is there any benefit for load (0010) and store (0011) instructions, if we reduce the number of
registers to 4?

3. Is there any benefit for conditional branch (0000) instructions, if we reduce the number of
registers to 4?

T5

We've got a bit memory, which is initialized to store the value 1 in every cell. The table
below shows the values of the two-bit address , one-bit write enable , and three-bit data-

2 -by-32

A WE

in signals during each access:

Cycle No. [1:0] [2:0]

1 0 1 1 1 0 1

2 1 1 0 1 1 0

3 1 0 1 0 1 0

4 0 1 1 0 1 1

5 1 1 0 1 0 1

6 0 0 1 1 0 1

7 1 1 1 1 1 0

8 1 1 0 0 1 0

You are required to fill in the values stored in each memory cell and the three data-out lines just
before the end of the eighth cycle (those marked by question marks ?).

D ​in

A WE D ​in

T6

Consider a memory that we will perform five successive accesses to. The following table shows
the type of each access (Read (load), Write (store)), and the contents of the MAR and MDR at
the completion of the access. Note that we have shortened the addressability to 5 bits.

Operation No. R/W MAR MDR

1 W x____ 11110

2 _ x____ _____

3 W x____ 10___

4 _ x____ _____

5 _ x____ _____

Operations on Memory

The following table show the contents of memory locations at x4000 to x4004 before the first
access, after the third access, and after the fifth access. We have added a constraint to this
problem in order to get one correct answer: The MDR can ONLY be loaded from memory as a
result of a load (read) access.

Address Before Access 1 After Access 3 After Access 5

x4000 01101 ____0 _____

x4001 11010 _0__0 _____

x4002 _1___ _____ _____

x4003 10110 _____ 01101

x4004 11110 11110 11110

Contents of Memory locations
You're required to fill in the blanks.

T7

1. If a machine cycle is 5 nanoseconds (i.e., seconds), how many machine cycles
occur each second?

2. Suppose the computer requires an average of eight cycles to process each instruction, and
the computer processes instructions one at a time from beginning to end. Then how many
instructions can the computer process in 1 second?

3. Modern microprocessors usually uses the pipeline technique to fully utilize the CPU.
Pipeline is computer’s equivalent of an assembly line. Each phase of the instruction cycle is
implemented as one or more separate pieces of logic. Each step in the processing of an
instruction picks up where the previous step left off in the previous machine cycle. Using
this feature, an instruction can be fetched from memory every machine cycle and handed
off at the end of the machine cycle to the decoder, which performs the decoding function
during the next machine cycle while the next instruction is being fetched. In short, by
properly dividing an instruction into multiple phases, we can run several instructions at the
same time. How many instructions can the computer process in 1 second if we apply the
pipeline technique?

T8

5 × 10−9

The LC-3 does not have an opcode for the logical function XOR. The eight instruction sequence
below performs the XOR of the contents of R1 and R2 and puts the result in R3. Fill in the four
missing instructions so that the eight instruction sequence will do the job.

Address Instruction

x3000

x3001 1001 110 010 111111

x3002 0101 101 111 000 010

x3003

x3004 1001 001 101 111111

x3005

x3006

x3007 1001 011 000 111111

T9

We would like to have an instruction that does nothing. Many ISAs actually have an opcode
devoted to doing nothing. It is usually called NOP, which means NO OPERATION. The instruction
is fetched, decoded, and executed. The execution phase is to do nothing! Which of the following
five instructions could be used for NOP and have the program still work correctly? For other
instructions, please describe what they have done.

1. 0001 010 001 1 00010
2. 0000 111 000000000
3. 0000 101 000000100
4. 1001 010 111 111111
5. 1111 0000 00100011

T10

Please describe the limitations of the BR instruction in LC-3 and how JMP instruction addresses
the issue.

