
Homework 6

T1

The following nonsense program is assembled and executed.

 .ORIG x3000

 LD R2, TEXT

 LD R3, TEST

AGAIN ADD R3, R3, R2

 ADD R2, R2, #-1

 BRnzp TEST

TEXT .STRINGZ "An LC-3 program"

TEST BRnp AGAIN

 TRAP x25

 .END

How many times is the loop executed? When the program halts, what is the

value in R3? (If you do not want to do the calculation, it is okay to answer this

with a mathematical expression.)

T2

Two students wrote interrupt service routines for an assignment. Both service

routines did exactly the same work, but the first student accidentally used RET

at the end of his routine, while the second student correctly used RTI . There

are three errors that arose in the first student’s program due to his mistake.

Describe any two of them.

T3

After learning the instruction JSR , a student wrote the following program to

print a character to the console.

 .ORIG x3000

 JSR A

 OUT

 BRnzp DONE

A AND R0, R0, #0

 ADD R0, R0, #9

 JSR B

 RET

DONE HALT

ASCII .FILL x0040

B LD R1, ASCII

 ADD R0, R0, R1

 RET

 .END

1. What does the student intend to print?

2. Will the program print the character? Can you explain why?

T4

The LC-3 contains the following logic.

Can you tell what signal X is? When will X be set to 1?

Hint: You may refer to Figure C.2 in the textbook.

T5

Imagine that you are writing a simple LC-3 program that is designed to receive

a character from the keyboard and then display that character on the screen.

1. How do you check in LC-3 if there is a new character input from the

keyboard?

2. Once a new character input is detected, how do you read this character

from the keyboard?

3. How do you display the read character on the screen?

4. Provide a simple LC-3 assembly code snippet that demonstrates this

process.

T6

Here's a subroutine that takes 4 chars in hex from keyboard and store the value

they represent in R0 using polling technique. Note that it assumes all possible

input characters are in 0123456789ABCDEF . Some comments have been deleted.

HEX_INPUT

 ST R1, SAVE_R1 ; R1 = Constant 1

 ST R2, SAVE_R2 ; R2 = Constant 2

 ST R3, SAVE_R3 ; R3 = Chars left (counter)

 ST R4, SAVE_R4 ; R4 = **DELETED**

 LD R1, C1

 LD R2, C2

 AND R3, R3, #0

 ADD R3, R3, #4

 AND R0, R0, #0 ; R0 stores our result

GETCHAR

 ; **DELETED**

 ADD R0, R0, R0

 ADD R0, R0, R0

 ADD R0, R0, R0

 ADD R0, R0, R0

WAIT

 LDI R4, KBSR ; Check keyboard status

 BRzp ____ ; **DELETED**

 LDI R4, KBDR ; Get KBDR

 ADD R4, R4, R1 ; Check if it is a letter

 BRzp ____ ; Got a capital letter

 ADD R4, R4, R2 ; Not a letter -> digit

 BR ____

LETTER

 ADD R4, R4, #10 ; **DELETED**

CONTINUE

 ADD R0, R0, R4 ; Add to result

 ADD R3, R3, #-1 ; Decr counter

 BRp ____ ; Wait for another char

 ; Restore regs

 LD R1, SAVE_R1

 LD R2, SAVE_R2

 LD R3, SAVE_R3

 LD R4, SAVE_R4

 RET

 ; Data

C1 .FILL #___ ; **DELETED**

C2 .FILL #___ ; **DELETED**

KBSR .FILL xFE00

KBDR .FILL xFE02

SAVE_R1 .BLKW 1

SAVE_R2 .BLKW 1

SAVE_R3 .BLKW 1

SAVE_R4 .BLKW 1

Your jobs:

1. Fill in the blanks (denoted by underlines _) to complete the program.

2. Briefly explain what the four consecutive ADD R0, R0, R0 do.

3. We have no idea what R0 stores before the subroutine is called, so we

placed the instruction AND R0, R0, #0 before the label GETCHAR in order

to clear R0 . Is this instruction necessary? Why or why not?

T7

The following program needs to be assembled and stored in LC-3 memory:

 .ORIG x3000

 LEA R0, STRING

 PUTS

 LD R0, SYMBOL

 OUT

 HALT

STRING .STRINGZ "H3ll0_W0r1d"

SYMBOL .FILL #33

 .END

1. What is the output of the program?

2. How many bytes of memory does the program occupy?

T8

1. What problem might arise if a program does not check KBSR before reading

KBDR ?

2. What problem might arise if the keyboard does not check KBSR before

writing to KBDR ?

3. Which one of the two problems mentioned above is more likely to occur?

Justify your answer.

T9

The following LC-3 program is assembled and then executed. What is the

output of this program? Assume all registers are initialized to 0 before the

program executes.

 .ORIG x3000

 LD R0, A

 LD R1, B

 AND R1, R0, R1

 ST R0, #7

 ST R1, #5

 ST R2, #6

 LEA R0, LABEL

 TRAP x22

 TRAP x25

LABEL .STRINGZ "FUNKY"

LABEL2 .STRINGZ "HELLO WORLD"

A .FILL #33

B .FILL #32

 .END

T10

Consider the following program:

 .ORIG x3000

 LD R0, A

 LD R1, B

 BRz DONE

 _____________ (a)

 _____________ (b)

 BRnzp AGAIN

DONE ST R0, A

 HALT

A .FILL x0___ (c)

B .FILL x0001

 .END

The program uses only R0 and R1 . Note that lines (a) and (b) indicate two

missing instructions, and that line (c) includes some missing digits.

Note also that one of the instructions in the program must be labeled AGAIN ,

but now the label is missing.

After execution of the program, the contents of A is x1800. In total, 9

instructions are executed.

During execution, some snapshots of the computer is taken at some clock cycles.

The table below is ordered by the cycle number in which the snapshot is taken.

Note that we doesn't say anything about how many clock cycles a memory

access takes.

Fill in the missing instructions in the program, and complete the program by

labeling the appropriate instruction as AGAIN . Also, fill in the missing

information in the table and answer the following questions.

1. How many clock cycles does a memory access take? (We define the clock

cycles of a memory access as the cycles during which the computer stays at

a state that does either MDR<−M[MAR] or M[MAR]<-MDR)

2. Given values for A and B , what does the program do?

Hint: You may refer to Figure C.2, Figure C.3 and Table C.1 in the

textbook. How signal LD.XX is used can be found in section 4.3.4.

