
LAB03: STRING COMPARE

Task

strcmp() is a built-in library function that is used for string comparison in C language. This

function takes two strings (array of characters) as arguments, compares these two strings

lexicographically. In this lab, you are required to use LC-3 assembly language to complete a

simpli�ed version of the strcmp() function.

The strcmp() function compares the ASCII value of each character till the non-matching value is

found or the NULL character is found. The working of the C strcmp() function can be described

as follows:

1. It starts with comparing the ASCII values of the �rst characters of both strings.

2. If the �rst characters in both strings are equal, then this function will check the second character,

if they are also equal, then it will check the third, and so on till the �rst unmatched character is

found or the NULL character is found.

If a NULL character is found, the function returns zero as both strings will be the same.

3. If a non-matching character is found,

If the ASCII value of the character of the �rst string is greater than that of the second string,

then the positive di�erence (> 0) between their ASCII values is returned.

If the ASCII value of the character of the �rst string is less than that of the second string, then

the negative di�erence (< 0) between their ASCII values is returned.

Given two strings S1 and S2, the starting addresses of the two strings are x3100 and x3200

respectively. Each character in the string is stored in successive memory location, and the string is

terminated with a NULL character. You can assume that S1 and S2 only contain characters from a-

z, A-Z, and a NULL character as the terminator. Note that 0 < strlen(S1), strlen(S2) < 100 .

Your job: store the return value of strcmp() in x3300 .

R0-R7 are set to zeroes at the beginning and your program should be start at x3000 .

Example 1:

Address x3100 x3101 x3102 x3103 x3104 x3105

Value(Hex) x0044 x0073 x0054 x0041 x0073 x0000

Character D s T A s NULL

Address x3200 x3201 x3202 x3203 x3204 x3205

Value(Hex) x0044 x0073 x0074 x0041 x0000 -

Character D s t A NULL -

Address x3300

Value(Hex) xFFE0

Example 2:

Address x3100 x3101 x3102 x3103 x3104 x3105

Value(Hex) x0044 x0073 x0054 x0041 x0073 x0000

Character D s T A s NULL

Address x3200 x3201 x3202 x3203 x3204 x3205

Value(Hex) x0044 x0073 x0074 x0041 x0000 -

Character D s T A NULL -

Address x3300

Value(Hex) x0073

For simplicity, your code can be written as follows.

 .ORIG x3000

 ; Begin of your code

 ;

 ;

 ; End of your code

 STI R2, RESULT ; write back you result

 HALT

S1_ADDR .FILL x3100

S2_ADDR .FILL x3200

RESULT .FILL x3300

 .END

 .ORIG x3100

S1 .STRINGZ "FirstString"

 .END

 .ORIG x3200

S2 .STRINGZ "SecondString"

 .END

Score

Your score will be split between correctness (50%) and the report (50%).

Submission

For this lab, you are required to use assembly code. Please adhere to the following guidelines:

1. Your program should start with .ORIG x3000
2. Ensure your program ends with .END

3. Your last instruction must be TRAP x25 (HALT)
4. Use capitalized keywords and labels (e.g., "ADD" rather than "add").
5. Maintain spaces after commas for clarity.
6. Pre�x decimal constants with # and hexadecimal constants with a lowercase x .
7. Include comments in your code where necessary for clari�cation.

Your submission should be structured as shown below：

PB********_Name.zip

├── PB********_Name_report.pdf

└── lab3.asm

Reports

Your report should be structured into the following sections:

1. Purpose
2. Principles
3. Procedure (e.g. bugs or challenges you encountered and how to solve them)
4. Results

