Lab8 Learn from the past

Task

After the baptism of the seven labs before, the last lab must be a piece of cake for you.

In this lab, you only need to use a high-level programming language(e.g. C/C++) to implement all the code
that has been written before. Note that the algorithm needs to be consistent with what was used before. (e.g.
Modulo operations cannot be replaced with % for the second lab and you cannot use strcmp() inlab3)
Here are program lists:

1. lab1: counting zero

2. lab2: the pingpong sequence
3. lab3: string compare

4. lab4: baguenaudier

Rules

Here are some details:

1. You are expressly forbidden to use operations like *, /, %, >>, << which LC3 does not support
directly and the equivalent library functions;

2.You are allowedtouse +, -, =, ++, --, ==, l=, <, >, <=, >=, &, |, ~, O;

3. You are allowed to use for, while, do while, if, continue, break , switch case ;

4. You can only use certain data types, including int, intlé6_t, char and pointers/arrays of the same

type.
5. You are allowed to define help functions that do not violate the above rules.

Skeleton

For your convenience, your code may be written as:

#include <cstdint>
#include <iostream>
#include <fstream>

#include <bitset>

##define LENGTH 1
#define MAXLEN 100
#define STUDENT_ID_LAST_DIGIT 3



intl16_t labl(intil6_t n) {

// initialize

// calculation

// return value

int16_t lab2(int16_t n) {

// initialize

// calculation

// return value

intl16_t lab3(char si1[], char s2[]) {

// initialize

// calculation

// return value

intl6_t lab4(intl6_t *memory, intl6_t n) {

// initialize

// calculation

// return value

int main() {

std::fstream file;

file.open("test.txt", std::ios::in);

// labl

intl6_t n = 0;

std::cout << "===== labl =====" << std

for (int i = ©; i < LENGTH; ++i) {
file >> n;

std::cout << labl(n) << std::endl;

}

// lab2

std::cout << "===== lab2 =====" << std
for (int i = @; i < LENGTH; ++i) {

file >> n;
std::cout << lab2(n) << std::endl;

::endl;

::endl;



std::cout << "===== lab3 =====" << std::endl;
char s1[MAXLEN]; char s2[MAXLEN];
for (int i = ©; i < LENGTH; ++i) {

file >> s1 >> s2;

std::cout << lab3(sl, s2) << std::endl;

std::cout << "===== lab4 =====" << std::endl;
intl6_t memory[MAXLEN], move;
for (int i = ©; i < LENGTH; ++i) {
file >> n;
intl6_t state = 0;
move = lab4(memory, n);
for(int j = 0; j < move; ++j){
std::cout << std::bitset<16>(memory[j]) << std::endl;

file.close();

return 0;

with the test.txt we provide, here is the output

0000000000000001
0000000000000101
0000000000000100
0000000000000110
0000000000000111

Note:

1. If you use the programming framework we provide, for the convenience of TA's test, please comment out
the #define LENGTH 1 when submitting. (So TA can use -DLENGTH=X since there are more testcases, we
provide test_multi.txt to help you understand this process.)

2. Since we used the student number for calculations and checksums in lab1, in this lab you will also need
to set the last digit of your student number by modifying the macro definition STUDENT_ID_ LAST_DIGIT .



3. If you write from scratch yourself, please describe your program structure in the report, and make sure
your output is consistent with our skeleton.

Additional Requirements

If you don’t comply with these requirements, the lab may be counted as an invalid work.

1. Your report should be structured into the following sections:

Purpose

Principles

Procedure (e.g. bugs or challenges you encountered and how to solve them)
Results

2. Your submission be structured as shown below.

pPBX***x*x*x** Name.zip
|— pPB******** Name_report.pdf
L— 1ab8.c/cpp



